2016/01/19

Олон гишүүнтийн түүх (төгсгөл)

Өмнөх - Олон гишүүнтийн түүх (4р хэсэг)



Энэ хүртэл олон гишүүнт тэгшитгэлийн ерөнхий томъёог тойрсон түүхийн талаар өгүүллээ.
3 зэргийн олон гишүүнтийн ерөнхий томъёог олсон хичээнгүй математикч Tartaglia. Тэгээд тэр үр дүнг нь тэр чигт нь булааж авсан Cardano. Cardano-гийн шавь, 4 зэргийн олон гишүүнтийн ерөнхий томъёог олж нээсэн Ferrari.
5 зэргийн олон гишүүнт тэгшитгэлд ерөнхий томъёо байхгүй болохыг баталсан боловч, судалгааны ажлаа Cauchy-гоор үрэгдүүлж, гансарсан чигтээ нас барсан Abel. Мөн Abel-тай адилаар, судалгааны ажлуудаа үрэгдүүлж, эцэстээ дуэльд залуу амиа алдсан Galois.
Олон гишүүнт тэгшитгэлийн ерөнхий томъёоны эрэл хайгуул ийм адал явдлаар өрнөсөн юмсанж.
Энэ яриагаа өндөрлөхийн өмнө, эмхэтгэл болгож 2 зүйлийг хэлмээр санагдана.

Нэгд гэвэл, математикийн томъёо гэдэг, өнгөц харахад амьгүй хүйтэн, хүнээс хөндий мэт бодогдовч, үнэндээ түүний цаана бид бүхэнтэй ив ижил мах цусанд төрсөн математикчидын амьдрал үхэл хосолсон ширүүн тэмцэл байдаг болох. Хоёрт, хүн бидний улам цаадахийг мэдэх гэсэн хүсэл шуналд хязгаар гэж үгүй гэх явдал юм.
Хүн, “2 зэргийн олон гишүүнт”-ийн ерөнхий томъёог мэдчих юм бол, гарцаагүй “3 зэргийн олон гишүүнт”, “4 зэргийн олон гишүүнт”-ийн томъёо нь тэгвэл ямар байх бол хэмээн мэдэхийг хүснэ. Энэ удаагийн ярианд 5-с дээш зэргийн олон гишүүнтэд ерөнхий томъёо байхгүй болохыг тайлбарласан боловч, хэрэвзээ “5 зэргийн олон гишүүнт”-д ерөнхий томъёо байсансан бол, гарцаа байхгүй хүмүүс “6 зэргийн олон гишүүнт”-ийн томъёог эрж олохоор шаналцгаах байсан биз. Тэгээд явсаар эцэстээ “n зэргийн олон гишүүнт”, n-ын оронд ямар ч тоо байсан ганц орлуулгаар хариуг нь гаргаад өгдөг төгс томъёо, түүнийг олохоор зүтгэх байснаас зайлахгүй учиртай.
Тэгээд тэр нь “бүгдийг олчихлоо”, эсвэл “олдох боломжгүй” гэсэн математик баталгаагаар төгс шийдэгдээгүй л бол, математикчид зогсолтгүй судалсаар л явах байсан биз. Тэгээд, ахиад олон хүн түүний төлөө өөрийн амь амьдралаа зориулах байсан биз.
Энэ бол мэдээж өнгөрсөн цагийн хүмүүсийн тухай яриа бус, математик гэх мэдлэгийн салбараар ч хязгаарлагдах зүйл биш. Өнөөдөр, яг одоо ч их сургууль гэх инститүцийн судалгааны өрөөнд очиж үзвэл, олон оюутан судлаачид “Тэгвэл дараагийн тохиолдол нь яах бол?” гэлцэн өдөр шөнийг ялгалгүй хөөн эрэлхийлж, түүнтэй зэрэгцээд өрсөлдөөн хийгээд алдар нэр зэрэг хүмүүний тэр л хүсэл тачаалдаа хөтлөгдөн шинэ адал явдал, шинэ уянга романсыг бүтээн буй биз ээ. Энд танилцуулсан математикчидын шинийг хийгээд үнэнийг эрэлхийлэх гал халуун сэтгэл, эхийн сэтгэл үрээр дамжих мэт үе үеийг дамжин өнөөдөр ч дүрэлзэн яваа.
Бид бүхний сургуульд заалгасан математикийн элдэв томъёонууд. Ердөө л нэг цифр тэмдэгнүүдийн дараалсан хэлхээ, шалгалтын бодлого бодохын төлөө л цээжилдэг байсан тэр уйтгартай томъёонууд.
Гэвч үнэндээ түүний цаана, математикчидын хүсэл тэмүүлэл хийгээд амь амьдралаа өргөн байж тэмцсэн сэтгэл хөдлөм түүх байдгийг битгий мартаарай.

9 comments:

  1. Anonymous19/1/16 17:45

    Янзтай. Маш их баярлалаа :D

    ReplyDelete
  2. - Бид бүхний сургуульд заалгасан математикийн элдэв томъёонууд. Ердөө л нэг цифр тэмдэгнүүдийн дараалсан хэлхээ, шалгалтын бодлого бодохын төлөө л цээжилдэг байсан тэр уйтгартай томъёонууд

    Нээрээ л 10 жилд байхад иймэрхүү романтизмтайгаар томъёог тайлбарлавал эргэж санахад ч гэсэн амар байх байсан байхдаа.

    ReplyDelete
  3. тэгээд 3 4 гишүүнтийн томьёо нь яг юу юм бол?

    ReplyDelete
    Replies
    1. Нэтээр хайвал бүгд гараад ирнэ ээ.

      Delete
  4. Anonymous20/1/16 01:38

    Заримдаа ч өөртөө гомдох л юм. Дэндүү анзааргагүй, дэндүү урсгалаараа явж байсан он цагуудын аль нэг сэжимд шинжлэх ухааныг танин мэдэх гэсэн хүсэл тэмүүлэл яаж ийж байгаад төрөхгүй яав даа... Гэхдээ яг одооноос л энэ бүхнийг эргэцүүлж бас сурч мэдэх гэсэн шуналдаа хөтлөгдөн таны хуудсыг эргүүлэх боломж сөхөө бий болгосондоо өчүүхэн хэдий ч баяртай байдаг юм. Мэдэхгүйгээ мэдэх гэсэн хүсэл энэ урт хугацаа өнгөрсөн ч тогтносоор л, над мэтийн жирийн хүмүүсээр хүрээгээ тэлсээр л байгаа нь сайхан юм даа.

    ReplyDelete
    Replies
    1. Манай боловсролын систем, орчин нийгэм маань шинжлэх ухаанд тийм ч ойр дотно биш байгаагийн л илрэл болов уу даа. Ялангуяа 10 жилийн сургалт урлагийг сурталчилсанаар урлагт авъяастай хүүхдийг нээж, спортыг сурталчилсанаар спортод авъяастай хүүхдийг нээж, шинжлэх ухааныг сурталчилсанаар шинжлэх ухаанд авъяастай хүүхдийг нээж, хүүхэд бүрт өөрийнх нь боломжийг таниулж өгдөг баймаар.

      Delete
  5. Сансарааг өнгөрсөн оны шилдэг блогчиноор хувьдаа шалгарууллаа. Чи шүү.

    ReplyDelete
  6. Anonymous23/7/16 14:21

    сэтгэл хөдлөм, сэтгэгдэл бичихгүй байхын сайхан нийтлэл байна. кино хийчмээр юм бусуу

    ReplyDelete